Sensoren
CATEGORY | SUB CATEGORY | DETAILS | P/N | |||
P/N | IMAGE | DESCRIPTION | DATA SHEET | |||
Sensoren | Humidity sensors | detail | HDC3021 |
The HDC302x is an integrated capacitive based relative humidity (RH) and temperature sensor. It provides high accuracy measurements over a wide supply range (1.62 V – 5.5 V), along with ultra-low power consumption in a compact 2.5-mm × 2.5-mm package. Both the temperature and humidity sensors are 100% tested and trimmed on a production setup that is NIST traceable and verified with equipment that is calibrated to ISO/IEC 17025 standards. Drift Correction reduces RH sensor offset due to aging, exposure to extreme operating conditions, and contaminants to return device to within accuracy specifications. For battery IoT applications, auto measurement mode and ALERT feature enable low system power by maximizing MCU sleep time. There are four different I2C addresses that support speeds up to 1 MHz. A heating element is available to dissipate condensation and moisture. The HDC302x is an open cavity package without protective cover. Two device variants have a cover option to protect the open cavity RH sensor: HDC3021 and HDC3022. HDC3021 has removable protective tape to allow conformal coatings and PCB wash. HDC3022 has a permanent IP67 filter membrane to protect against dust and water.
|
DATA SHEET | |
Sensoren | Magnetic sensors | detail | TMAG5328 |
The TMAG5328 device is a high precision, low-power, resistor adjustable Hall effect switch sensor operating at low voltage. The external resistor sets the BOP value the device will operate from. By following a simple formula, it is easy to calculate what resistor value is needed to set up the right BOP value. The Hysteresis value is fixed and therefore the BRP value is defined as BOP-Hysteresis. With this adjustable threshold feature, the TMAG5328 allows for easy and quick prototyping, fast design to market, reuse across different platforms and easy last minute modifications in case of unexpected changes. When the applied magnetic flux density exceeds the BOP threshold, the device outputs a low voltage. The output stays low until the flux density decreases to less than BRP, and then the output drives a high voltage. By incorporating an internal oscillator, the device samples the magnetic field and updates the output at a rate of 20 Hz for the lowest current consumption. The TMAG5328 features an omnipolar magnetic response. The device operates from a VCC range of 1.65 V to 5.5 V, and is packaged in a standard SOT-23-6 package.
|
DATA SHEET | |
Sensoren | Hall-effect current sensors | detail | TMCS1107-Q1 |
The TMCS1107-Q1 is a galvanically isolated Hall-effect current sensor capable of DC or AC current measurement with high accuracy, excellent linearity, and temperature stability. A low-drift, temperature-compensated signal chain provides <3% full-scale error across the device temperature range. The input current flows through an internal 1.8-mΩ conductor that generates a magnetic field measured by an integrated Hall-effect sensor. This structure eliminates external concentrators and simplifies design. Low conductor resistance minimizes power loss and thermal dissipation. Inherent galvanic insulation provides a 420-V lifetime working voltage and 3-kVRMS basic isolation between the current path and circuitry. Integrated electrical shielding enables excellent common-mode rejection and transient immunity. The output voltage is proportional to the input current with multiple sensitivity options. Fixed sensitivity allows the TMCS1107-Q1 to operate from a single 3-V to 5.5-V power supply, eliminates ratiometry errors, and improves supply noise rejection. The current polarity is considered positive when flowing into the positive input pin. Both unidirectional and bidirectional sensing variants are available. The TMCS1107-Q1 draws a maximum supply current of 6 mA, and all sensitivity options are specified over the operating temperature range of –40°C to +125°C.
|
DATA SHEET | |
Sensoren | mmWave radar sensors | detail | AWR2944 |
The AWR294x is a single chip mmWave Sensor composed of a FMCW transceiver, capable of operation in the 76-81 GHz band, radar data processing elements, and peripherals for in-vehicle networking. It is built with TI’s low power, 45 nm RFCMOS process and enables unprecedented levels of integration in a small form factor and minimal BOM. AWR294x is an ideal solution for low power, self-monitored, ultra-accurate radar systems in the automotive space. TI’s low-power, 45-nm RFCMOS process enables a monolithic implementation of a 3-4 TX, 4 RX system with integrated PLL, VCO, mixer, and baseband ADC. Integrated in the DSP Subsystem (DSS), is TI’s high-performance C66x DSP for radar signal processing. The device includes a Radio Processor Subsystem (RSS), which is responsible for radar front-end configuration, control, and calibration. Within the Main Subsystem (MSS), the device implements a user programmable ARM R5F allowing for custom control and automotive interface applications. The Hardware Accelerator block (HWA 2.0) supplements the DSS and MSS by offloading comon radar processing such as FFT, Constant False Alarm rate (CFAR), scaling, and compression. This saves MIPS on the DSS and MSS, opening up resources for custom applications and higher level algorithms. A Hardware Security Module (HSM) is also provisioned in the device (available for only Secure Part variants). The HSM consists of a programmable ARM Cortex M4 core and the necessary infrastructure to provide a secure zone of operation within the device. Simple programming model changes can enable a wide variety of sensor implementation (Short, Mid, Long) with the possibility of dynamic reconfiguration for implementing a multimode sensor. Additionally, the AWR294x device is provided as a complete platform solution including TI hardware and software reference designs, software drivers, sample configurations, API guides, and user documentation.
|
DATA SHEET | |
Sensoren | Automotive mmWave radar sensors | detail | AWR1843AOP |
The AWR1843AOP is an Antenna-On-Package device capable of operation in the 76- to 81GHz band. The device is built with TI’s low-power 45-nm RFCMOS process and enables unprecedented levels of integration in an extremely small form factor. The AWR1843AOP is an ideal solution for low-power, self-monitored, ultra-accurate radar systems in the automotive space. It integrates a DSP subsystem, which contains TI’s high-performance C674x DSP for the Radar Signal processing. The device includes a BIST processor subsystem, which is responsible for radio configuration, control, and calibration. Additionally the device includes a user programmable Arm Cortex-R4F based for automotive interfacing. The Hardware Accelerator block (HWA) can perform radar processing and can offload the DSP in order to execute higher level algorithms. Simple programming model changes can enable a wide variety of sensor applications with the possibility of dynamic reconfiguration for implementing a multimode sensor. Additionally, the device is provided as a complete platform solution including reference hardware design, software drivers, sample configurations, API guide, and user documentation.
|
DATA SHEET | |
Sensoren | detail | LDC3114 |
The LDC3114 is an inductive sensing device that enables touch button design for human machine interface (HMI) on a wide variety of materials by measuring small deflections of conductive targets using a coil that can be implemented on a small printed circuit board (PCB) located behind the panel. This technology can be used for precise linear position sensing of metal targets for automotive, consumer and industrial applications by allowing access to the raw data representing the inductance value. Inductive sensing solution is insensitive to humidity or non-conductive contaminants such as oil and dirt. The button mode of LDC3114 is able to automatically correct for any deformation in the conductive targets. The LDC3114 offers well-matched channels, which allow for differential and ratiometric measurements which enable compensation of environmental and aging conditions such as temperature and mechanical drift. The LDC3114 includes an ultra-low power mode intended for power on/off buttons or position sensors in battery powered applications. The LDC3114 is easily configured through an I2C interface. The LDC3114 is available in a 16-pin TSSOP package.
|
DATA SHEET | ||
Sensoren | Ambient light sensors | detail | OPT3006 |
The OPT3006 is a single-chip lux meter, measuring the intensity of visible light as seen by the human eye. The OPT3006 is available in an ultra-small PicoStar package, so the device fits into tiny spaces. The precision spectral response of the sensor tightly matches the photopic response of the human eye. With strong infrared (IR) rejection, the OPT3006 accurately meters the intensity of light as seen by the human eye, regardless of the light source. The strong IR rejection also aids in maintaining high accuracy when design requires mounting the sensor under dark glass. The OPT3006, often in conjunction with backlight ICs or lighting control systems, creates light-based experiences for humans, and is an ideal replacement for photodiodes, photoresistors, or lower-performing ambient light sensors. Measurements can be made from 0.01 lux up to 83k lux without manually selecting full-scale ranges by using the built-in, full-scale setting feature. This capability allows light measurement over a 23-bit effective dynamic range. The digital operation is flexible for system integration. Measurements can be either continuous or single-shot. The control and interrupt system features autonomous operation, allowing the processor to sleep while the sensor searches for appropriate wake-up events to report with the interrupt pin. The digital output is reported over an I2C- and SMBus-compatible, two-wire serial interface. The low power consumption and low power-supply voltage capability of the OPT3006 enhance the battery life of battery-powered systems.
|
DATA SHEET | |
Sensoren | Temperature sensors | detail | TMP126 |
The TMP126 is a 0.25°C accuracy digital temperature that supports an ambient temperature range of –55°C to 175°C. The TMP126 features a 14-bit signed temperature resolution (0.03125°C per LSB) while operating over a supply range of 1.62 V to 5.5 V. With a fast conversion rate, low supply current, and a simple 3-wire SPI compatible interface, the TMP126 is designed for a wide range of applications. The TMP126 includes additional advanced features for increased reliability in harsh environments such as optional CRC checksum for data integrity, programmable alert limits, a temperature slew rate warning, and an enhanced operational temperature range. The device utilizes a NIST traceable factory calibration for guaranteed accuracy and comes in a small SOT package for close placement to heat sources along with fast response times.
|
DATA SHEET | |
Sensoren | Analog temperature sensors | detail | TMP9A00-EP |
The TMP9A00-EP device is a CMOS, precision analog output temperature sensor available in a tiny 5-pin SC70 package. The TMP9A00-EP operates from –55 °C to 150 °C on a supply voltage of 1.8 V to 5.5 V with a supply current of 4 µA. Operation as low as 1.8 V is possible for temperatures between 15 °C and 150 °C. The linear transfer function has a slope of –11.77 mV/°C (typical) and an output voltage of 1.8639 V (typical) at 0 °C. The TMP9A00-EP has a ±2.5 °C accuracy a from –55 °C to 130 °C and ±3.5 °C from 130 °C to 150 °C. The 4-µA (maximum) supply current of the TMP9A00-EP limits self-heating of the device to less than 0.01 °C. When V+ is less than 0.5 V, the device is in shutdown mode and consumes less than 20 nA (typical). The TMP9A00-EP is available in a 5-pin SC70 package that reduces the overall required board space.
|
DATA SHEET |